Spatial and Temporal Electric Vehicle Demand Forecasting in Central London

نویسندگان

  • Salvador ACHA
  • Koen H. VAN DAM
  • Nilay SHAH
چکیده

If electricity infrastructures are to make the most of electric vehicle (EV) technology it is paramount to understand how mobility can enhance the management of assets and the delivery of energy. This research builds on a proof of concept model that focuses on simulating EV movements in urban environments which serve to forecast EV loads in the networks. Having performed this analysis for a test urban environment, this paper details a case study for London using an activity-based model to make predictions of EV movements which can be validated against measured transport data. Results illustrate how optimal EV charging can impact the load profiles of two areas in central London – St. John’s Wood & Marylebone/Mayfair. Transport data highlights the load flexibility a fleet of EVs can have on a daily basis in one of the most stressed networks in the world, while an optimal power flow manages the best times of the day to charge the EVs. This study presents valuable information that can help in begin addressing pressing infrastructure issues such as charging point planning and network control reinforcement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review

Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...

متن کامل

A Smart Charging Method for Optimum Electric Vehicles Integration in the Distribution System in Presence of Demand Response Program

Electric vehicle charging in the distribution network is one of the common techniques for technical and economic management of energy distribution, which, if implemented properly, will bring several benefits such as reducing network peak load, charging costs reduction, loss minimization, and etc. In most traditional charging methods, the constraints of fully charging electric vehicles at depart...

متن کامل

Groundwater Level Forecasting Using Wavelet and Kriging

In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...

متن کامل

Optimal Siting and Sizing of Hybrid Energy Systems (PV-WT-CHP) and Electric Vehicle Charging Stations Simultaneously based on Game Theory Approach

This paper proposes a methodology for practical siting and sizing of Hybrid energy systems (HESs) consist of: wind turbine (WT), photovoltaic (PV) and combined heat and power (CHP) units. In this method, the interaction of Plug-in Electric Vehicles (PIEVs) in the electric distribution system is considered. Electric Vehicle are seen to have some negative impacts on electric distribution system p...

متن کامل

Short term electric load prediction based on deep neural network and wavelet transform and input selection

Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013